Noncommutative Riemannian geometry on graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Noncommutative and semi-Riemannian Geometry

We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semiRiemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Kreinselfadjoint. We show that the noncommuta...

متن کامل

Riemannian manifolds in noncommutative geometry

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré ...

متن کامل

Noncommutative spectral geometry of Riemannian foliations

According to [9, 8], the initial datum of noncommutative differential geometry is a spectral triple (A,H, D) (see Section 3.1 for the definition), which provides a description of the corresponding geometrical space in terms of spectral data of geometrical operators on this space. The purpose of this paper is to construct spectral triples given by transversally elliptic operators with respect to...

متن کامل

Pseudo-riemannian Metrics in Models Based on Noncommutative Geometry

Several examples and models based on noncommutative differential calculi on commutative algebras indicate that a metric should be regarded as an element of the left-linear tensor product of the space of 1-forms with itself. We show how the metric compatibility condition with a linear connection generalizes to this framework.

متن کامل

Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets

An analogue of the Riemannian Geometry for an ultrametric Cantor set (C, d) is described using the tools of Noncommutative Geometry. Associated with (C, d) is a weighted rooted tree, its Michon tree [28]. This tree allows to define a family of spectral triples (CLip(C),H, D) using the l space of its vertices, giving the Cantor set the structure of a noncommutative Riemannian manifold. Here CLip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2013

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2013.02.004